
352 CHAPITRE 14. SOMMES DE VARIABLES INDÉPENDANTES

Démonstration. Afin de simplifier les écritures, on notera dans ce qui suit Λ
et Λ∗ pour Λµ et Λ∗

µ.
1) Montrons que h(x) ≥ Λ∗(x). Par l’inégalité de Chebychev , on a pour tout
λ ≥ 0,

P(Sn ≥ xn) ≤ P(eλSn ≥ eλnx) ≤ e−λnxE[eλSn ] = enΛ(λ)−λnx

et donc
1
n

logP(Sn ≥ nx) ≤ Λ(λ) − λx. (14.1)

Ainsi, ∀λ ≥ 0 ∀x ∈ R Λ(λ) + h(x) ≥ λx, ce qui nous donne

∀λ ≥ 0 Λ(λ) ≥ h∗(λ) = sup
x∈R

(λx− h(x)) .

Si x ≥ EX1, l’inégalité (14.1) demeure valide pour λ ≤ 0, car on a alors
Λ(λ) − λx ≥ 0 pour x ≥ EX1 (grâce à l’inégalité de Jensen). Ainsi

∀λ ∈ R ∀x ≥ EX1 Λ(λ) + h(x) ≥ λx,

d’où l’on tire
h(x) ≥ Λ∗(x) pour x ≥ E[X1].

2) On va commencer par montrer que Λ(λ) ≤ h∗(λ) pour tout λ ≥ 0.
Traitons à part le cas λ = 0 : on a

h∗(0) = sup
x∈R

−h(x) ≥ sup
x∈R

− logP(S1 ≥ x) = 0 = Λ(0).

Supposons maintenant λ > 0. On a

Λ(λ) = logE[eλX ] = lim
M→+∞

logE[eλX1{|X|≤M}]

≤ lim
M→+∞

inf
n≥1

1
n

logE[eλSn1{|Sn|≤nM}].

On peut écrire

E[eλSn1{|Sn|≤nM}] =
∫

[−nM,nM ]
eλudPSn(u)

=
∫

[−nM,nM ]

(
e−λnM +

∫
[−nM,nM ]

1{x≤u}λe
λx dλ(x)

)
dPSn(u)

≤ e−λnM +
∫

[−nM,nM ]
λeλxP(Sn ≥ x) dλ(x)

= e−λnM +
∫

[−M,M ]
nλeλnxP(Sn ≥ nx) dλ(x)

≤ e−λnM +
∫

[−M,M ]
nλeλnxe−nh(x) dλ(x)

≤e−λnM + 2Mnλenh∗(λ)
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Comme h∗(0) = sup
x∈R

− h(x) ≥ 0, il existe x ∈ R avec h(x) < +∞, ce qui

entraîne que h∗(λ) > −∞. On peut donc choisir M tel que −Mλ ≤ h∗(λ). On
a alors pour tout n ≥ 1

logE[eλSn1{|Sn|≤nM}] ≤ log(2Mnλ+ 1) + nh∗(λ),

d’où
inf
n≥1

1
n

logE[eλSn1{|Sn|≤nM}] ≤ h∗(λ),

et finalement Λ(λ) ≤ h∗(λ).
3) Pour conclure, il nous reste à montrer que h(x) ≤ Λ∗(x).

Notons c = inf{x ∈ R : P(X1 ≥ x) = 0}.
— si x < c. Il nous suffit de montrer qu’il existe λ réel avec h(x) ≤

λx − Λ(λ). Or, comme h est convexe croissante, finie sur ] − ∞, c[,
il existe λ réel positif tel que pour tout y, h(y) ≥ h(x) + λ(y − x),
soit λx − h(x) ≥ λy − h(y). En prenant le supremum en y, on obtient
λx − h(x) ≥ h∗(λ), mais comme on a montré que h∗(λ) = Λ(λ) pour
λ ≥ 0, cela achève la preuve dans ce cas.

— si x > c, comme Λ(λ) ≤ cλ pour tout λ≥ 0, on a

Λ∗(x) ≥ sup
λ∈R+

(x− c)λ = +∞, et l’inégalité est évidente.

— si x = c, il est facile de voir que P(Sn ≥ nc) = P(X1 = c)n, d’où
h(c) = − logP(X1 = c). Par ailleurs, pour ε, λ > 0, on a

E(eλX1) ≤ eλ(c−ε) + eλcP(c− ε < X1 ≤ c),

d’où λc− Λ(λ) ≥ − log(e−λε + P(c− ε < X1 ≤ c)) et

Λ∗(c) ≥ lim
λ→+∞

λc− Λ(λ) ≥ lim
λ→+∞

− log(e−λε + P(c− ε < X1 ≤ c))

= − log(P(c− ε < X1 ≤ c)).

En faisant tendre ε vers 0, on obtient donc Λ∗(c) ≥ h(c).

Le résultat utilisé dans la pratique est le suivant.

Corollaire 14.3.4 (inégalité de Chernov). Soit (Xn, n ≥ 1) une suite de
variables aléatoires indépendantes de même loi, intégrable et A = ess supX1
. Alors, pour tout x> E(X1),

P(X1 + · · · +Xn ≥ xn) ≤ e−nΛ∗(x). (14.2)

On a Λ∗(x) > 0 dès qu’il existe ε > 0 tel que Λ(ε) < +∞.
Cette décroissance exponentielle (14.2) s’étend à x = A si et seulement si P(X1 = A) < 1.



354 CHAPITRE 14. SOMMES DE VARIABLES INDÉPENDANTES

Démonstration. (14.2) vient de l’identité h(x) = Λ∗(x) pour x ≥ E(X1) et
de la définition de h. En appliquant le théorème de convergence monotone à
la partie négative de X1, on a limN→+∞ E(max(−N,X1)) = E(X1), donc on
peut trouver N tel que x > E(max(−N,X1)). Notons ν la loi de max(−N,X1)
et prenons a avec x > a > Emax(−N,X1). Pour tout λ > 0, on a

Λ∗(x) ≥ −Λ(λ) + λx ≥ −Λν(λ) + λx,

donc pour avoir Λ∗(x) > 0, il suffit de trouver λ > 0 tel que Λν(λ) < λa.
Posons ϕ(λ) =

∫
eλt dν(t). Pour λ ∈]0, ε/2[, on a

|e
λt − 1
λ

| ≤ |t| max(1, eλt) ≤ N + 2
ε
eεt pour ν presque tout t,

d’où, avec le théorème de convergence dominée : ϕ(λ) = 1 +λ
∫
t dν(t) + o(λ),

lorsque λ tend vers 0 par valeurs supérieures. Finalement

Λν(λ) = λE(max(−N,X1)) + o(λ),

ce qui donne le résultat voulu en prenant λ > 0 suffisamment petit.

Remarque. Les estimées de grandes déviations s’étendent aux intervalles de
la forme [x,+∞[, aux intervalles ouverts, fermés ou semi-ouverts. Il s’agit du
principe de grandes déviations, prouvé par Cramér pour une suite de variables
indépendantes de même loi sur R. Nous ne l’énonçons pas ici, car il s’agit d’un
résultat compliqué, qui a déjà fait l’objet de divers livres (pas toujours faciles
d’accès), comme celui de Varadhan.

Exemple. Voyons maintenant sur un exemple comment utiliser ces résultats.
Étudions le cas simple où les variables (Xn)n≥1 sont indépendantes de loi de
Bernoulli de paramètre p. Dans ce cas, Sn correspond au nombre de “pile”
obtenu lors de n lancers indépendants d’une pièce de monnaie.

Le théorème précédent implique le résultat suivant : pour tout m ∈ [p, 1[,
on a

lim
n→∞

− 1
n

logP(Sn ≥ nm) = sup
s≥0

(m log s− logGX(s))

= m log m(1 − p)
p(1 −m)

− log
(

1 −
(

1 − m(1 − p)
p(1 −m)

)
p

)
,

où GX(s) = 1 − (1 − s)p est la fonction génératrice de la loi de Bernoulli de
paramètre 0 < p < 1 (car pour une loi de Bernoulli, Λ(λ) = logGX(eλ)).


