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Démonstration. Afin de simplifier les écritures, on notera dans ce qui suit A
et A" pour A, et Aj,.
1) Montrons que h(z) > A*(x). Par I'inégalité de Chebychev , on a pour tout
A >0,
P(Sn > xn) < P(eASn > e)mr) < 6—>\an[6)\5‘”] — enA()\)—)\nm

et donc .

- log P(S,, > nz) < A(X\) — Az. (14.1)
Ainsi, VA>0 VzeR A(N) + h(x) > Az, ce qui nous donne

YA>0 AN > h"(N\) =sup(\x — h(z)).
zeR

Si x > EX;, l'inégalité (I2) demeure valide pour A < 0, car on a alors
A(X) — Az > 0 pour z > EX; (grace a I'inégalité de Jensen). Ainsi

YAER Ve>EX, AN+ h(z)> Az,
d’ou l'on tire
h(z) > A*(x) pour x > E[X4].

2) On va commencer par montrer que A(A) < h*(\) pour tout A > 0.
Traitons a part lecas A=0:o0n a

h*(0) = sup —h(z) > sup —log P(S1 > z) = 0 = A(0).
zeR zeR

Supposons maintenant A > 0. On a

A(N) = logE[e™] = g log E[e 1 x|<ar)]

— . .1 ASy,
S e

On peut écrire

E[e*" s, 1<nary) = / A dPs, (u)
[-nM,nM)]
— / <6A”M + / LA™ d/\(x)> dPs, (u)
[—nM,nM] [—nM,nM] -
< e My A MP(S, > z) dA(x)
[-nMnM)]

=AM +/ nANTP(S,, > nx) dA(x)
[_MvM]

< e M +/ nae e h(z) d\(x)
[7M7M]

e MM o e V)
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Comme h*(0) = sup — h(z) > 0, il existe z € R avec h(z) < 400, ce qui
Te

entraine que h*(\) > —oo. On peut donc choisir M tel que —M X < h*(A). On
a alors pour tout n > 1

d’ou

log ]E[e)‘S"]l{|Sn|§nM}] <log(2MnA + 1) + nh*(X),

. 1 AS, *
n <
égt; - logEle Il{\sn|§nM}] < h (M),

et finalement A(X) < h*(N).
3) Pour conclure, il nous reste a montrer que h(z) < A*(z).
Notons ¢ = inf{z € R : P(X; > x) = 0}.
— si & < ¢ Il nous suffit de montrer qu’il existe A\ réel avec h(z) <

Az — A(X). Or, comme h est convexe croissante, finie sur | — oo, |,
il existe A réel positif tel que pour tout y, h(y) > h(z) + ANy — z),
soit Az — h(xz) > Ay — h(y). En prenant le supremum en y, on obtient
Az — h(xz) > h*(A), mais comme on a montré que h*(A) = A(A) pour
A > 0, cela acheve la preuve dans ce cas.

si z > ¢, comme A()\) < ¢ pour tout A> 0, on a

A (z) > Sup (z — )\ = 400, et I'inégalité est évidente.
eR+

si x = ¢, il est facile de voir que P(S,, > nc) = P(X; = ¢)", d'ou
h(c) = —logP(X; = ¢). Par ailleurs, pour =, A > 0, on a
E(ﬁ(,\l\'\‘) < (\)\(('*;) + (‘/\('tpi(’(, —e< X; < c),

d’ott Ae — A(N) > —log(e MYPe—e< X; < c)) et

A()> Tm Ac—A(\) > Hm  —log(e ™ +P(c—c < X; <c))

A—+4oc A—toc
= —log(P(c —e < X1 < ¢)).

En faisant tendre ¢ vers 0, on obtient donc A*(¢) > h(c).

Le résultat utilisé dans la pratique est le suivant.

Corollaire 14.3.4 (incgalit¢ de Chernov). Soit (X,,n > 1) une suite de
variables aléatoires indépendantes de méme loi, intégrable et-A=-ess—supXt
. Alors, pour tout x> £( X ),

o

On a N(x) >0 des qu'il existe e > 0 tel que A(e)

P(X1+ -+ Xy > an) < e ™A@ (14.2)

< +00.
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Démonstration. (I3A) vient de lidentité h(x) = A*(z) pour z > E(X;) et
de la définition de h. En appliquant le théoreme de convergence monotone a
la partie négative de X1, on a limy_, o E(max(—N, X7)) = E(X;), donc on
peut trouver N tel que x > E(max(—N, X7)). Notons v la loi de max(—N, X;)
et prenons a avec x > a > Emax(—N, X1). Pour tout A > 0, on a

A (2) 2 =AA) + Az = —A, () + Az,

donc pour avoir A*(x) > 0, il suffit de trouver A > 0 tel que A,(A) < Aa.
Posons ¢(\) = [ e du(t). Pour A €]0,£/2[, on a

At 1 ¢
e —1 2
| < |t|max(1,eM) < N + Ze®! pour v presque tout ¢,

d’ot, avec le théoréme de convergence dominée : ¢(A) = 1+ X [ ¢ dv(t) 4+ o(N),
lorsque A tend vers 0 par valeurs supérieures. Finalement

Ay (A) = AE(max(—N, X1)) + o(N),

ce qui donne le résultat voulu en prenant A > 0 suffisamment petit.

O]

Remarque. Les estimées de grandes déviations s’étendent aux intervalles de
la forme [z, +00[, aux intervalles ouverts, fermés ou semi-ouverts. Il s’agit du
principe de grandes déviations, prouvé par Cramér pour une suite de variables
indépendantes de méme loi sur R. Nous ne ’énongons pas ici, car il s’agit d’un
résultat compliqué, qui a déja fait 'objet de divers livres (pas toujours faciles
d’acces), comme celui de Varadhan.

Exemple. Voyons maintenant sur un exemple comment utiliser ces résultats.
Etudions le cas simple ou les variables (X,,),>1 sont indépendantes de loi de
Bernoulli de parametre p. Dans ce cas, S, correspond au nombre de “pile”
obtenu lors de n lancers indépendants d’une piéce de monnaie.

Le théoréme précédent implique le résultat suivant : pour tout m € [p, 1],
on a

1
lim ——logP(S,, > nm) = sup (mlogs—logGx(s))

n—oo n 5>0
= mlogH—log(l—(l—H)p);

ou Gx(s) =1— (1 — s)p est la fonction génératrice de la loi de Bernoulli de
parametre 0 < p < 1 (car pour une loi de Bernoulli, A()\) = log Gx (e?)).



